Welcome Stranger to OCC!Login | Register

Palit GTX 260 Review

» Discuss this article (1)


[email protected] is a distributed computing project run by Stanford University. This project uses the spare CPU cycles, as well as GPU cycles (GPU Folding has been available on the red side of the fence with ATI cards for a while), to simulate the folding of proteins. When the proteins in our bodies fold improperly, things can go horribly wrong, and result in many diseases that are not yet curable. Examples include Alzheimer's, Mad Cow (BSE), CJD, ALS, Huntington's, Parkinson's, and many cancers and cancer-related syndromes. This project has been going on for some time now. With the performance increases in CPU and GPU computing technology seen in the past few years, the time required to run the simulations has dramatically dropped. For more information on the [email protected] project, visit the [email protected] main page - and don't forget, Team 12772 is the one you want to fold for! While monitoring the [email protected] client, I was amazed at the speed with which the Palit GTX 260 completed the assignments, initially completing five work units in about two hours. The units are currently running about a minute per step, so you will see at least one completed unit every two hours. Running the SMP clients took about a day to process one unit with a quad-core CPU. There is definitely a substantial performance increase with the CUDA technology and the GTX 260's 192 processor cores. Stanford has recently introduced a console GPU client for people running Vista-based systems. This takes away the graphic overhead issues, and helps speed through the work units, hopefully pushing the scientific discoveries even faster!







The processing power and processor design of the GTX 200 series GPU allows the video card to be used for things that people do not normally associate with the GPU's functionality. Using Nvidia's CUDA technology to harness this power, things such as distributed computing and video transcoding can be accomplished in much less time than it would take a high-end CPU. The [email protected] client is just one of these examples. Elemental Technologies has a transcoding application called BadaBoom that harnesses the massive parallel computing potential of the GTX 200 series GPU. CPU usage between the BadaBoom app and the one used for testing showed that CPU usage was fairly close, but the GPU-specific BadaBoom version did the work in less than half the time it took the CPU to complete the task.



Just to see how well this works, a sample film clip -184MB in size - was transcoded first with the CPU, and then again with the GPU, and the results were pretty astonishing. The measurement is in seconds, and best quality was selected. Hey, it really does work!



Related Products
Random Pic
© 2001-2018 Overclockers Club ® Privacy Policy
Elapsed: 0.3567299843   (xlweb1)