Welcome Stranger to OCC!Login | Register

Nearly Perfect Single-Crystal Graphene Grown on a Large Scale

Category: Science & Technology
Posted: 03:22PM
Author:

Since its discovery, many people have been working very hard to bring graphene to various products, thanks to its strength, flexibility, and very high conductivity. One of the primary issues with the material has been the difficultly of synthesizing it, especially on large scales. Researchers at the Institute for Basic Science in Korea have discovered a possible solution though, growing large pieces of single-crystal graphene quickly and possibly without an upper-size limit.

Graphene is an atom-thick sheet of carbon with a hexagonal molecular structure to it that can transport electrons at a very high speed, while still being very strong, very flexible, and transparent. These properties give it the potential to very successfully replace silicon in electronics, but achieving this would require large, high quality pieces of the carbon allotrope. Polycrystalline graphene, which consists of many crystals that interface with each other at various angles, can be produced at large sizes, but those varied interfaces are defects that impair the material's performance, so single-crystal graphene is needed. Previously producing just a few square centimeters would require a couple hours, but this new method was able to produce a 250 cm2 (5x50 cm 2) piece of nearly perfect graphene in just 20 minutes. The researchers accomplished this by starting with a copper-foil substrate that was heated to around 1030 ºC, allowing its atoms to align, forming a single crystal of copper. Then carbon atoms were deposited onto it via chemical vapor deposition, and these atoms formed islands that eventually coalesced to make a nearly perfect, single-crystal of graphene.

Obviously this is terrific news for the future of graphene, especially as it may be possible to scale it up just by using larger pieces of copper, while still being fast and cheap. It could also lead to new ways of producing other 2D materials with special and desirable properties.

Source: Institute for Basic Science



Register as a member to subscribe comments.
AkakmanH on August 11, 2017 12:20

Now, that is cool................


This news has comment postings disabled because it is now archived.

© 2001-2017 Overclockers Club ® Privacy Policy
Elapsed: 0.0273618698   (xlweb1)