Welcome Stranger to OCC!Login | Register

2D Crystals Could Support Superconductivity

Category: Science & Technology
Posted: 02:58PM

Superconductivity is a phenomenon many in the world have been waiting anxiously for, but achieving it is difficult. Typically the materials that can become superconducting must be cooled to very low temperatures, but the hope is to one day find or design one that would work at room temperatures. Researchers at the University of California, San Diego have recently discovered an artificial crystal structure that should support superconductivity, and the principle behind it.

The structure the researchers describe is comprised of alternating layers of atomically thick layers of semiconductor and insulator. Specifically they describe the molybdenum disulfide as the two-atom thick semiconductor, with boron nitride being the few-atom thick insulator separating and cladding the semiconductor. When an electric field is applied to this structure, electrons and holes, the positively charged areas left behind by electrons, collect in the different semiconductor layers. Despite the separation, the electrons and holes are still bounded, forming indirect excitons. At a certain temperature, these excitons will achieve the coherent state of superfluidity, meaning that they will form a gas lacking any viscosity. This will also cause the phenomenon known as counterflow superconductivity.

What this all translates to is a blueprint for creating structures that become superconducting at a specific temperature. Presently that temperature is predicted to rest near that of other high-temperature superconductors, which is still pretty cold. As the blueprint can be applied to other materials though, it could lead to new understanding of superconductivity and other quantum phenomena.

Source: University of California, San Diego

Register as a member to subscribe comments.
Guest comment
Thomas Lee Elifritz on July 31, 2014 11:57AM
These people are embarrassing themselves with these idiotic press releases. Seamus Davis and his collaborators are particularly embarrassing and most of the scientific community can see right through the BS.

This news has comment postings disabled because it is now archived.

© 2001-2018 Overclockers Club ® Privacy Policy
Elapsed: 0.1342589855   (xlweb1)