Welcome Stranger to OCC!Login | Register

Potential Replacement for Flash Memory Gets a Boost

Category: Science & Technology
Posted: July 14, 2014 02:04PM
Author: Guest_Jim_*

Flash memory has impacted many people and technologies, thanks to its speed, stability, and density. While it may be a champion memory technology at the moment, there are new technologies looking to supplant it. Among these is Resistive Random Access Memory (RRAM), which researchers at Rice University have recently made more appealing to the industry.

This new memory type works by putting a resistive material between two wires. When a great enough voltage is applied to the wires, the electricity will form a conducting path through the normally resisting material. Those pathways do not need to be permanent though, allowing RRAM to be rewriteable, and because of how small its cells can be, it can have 50 times the data density of flash. Though many materials can be used for RRAM, the Rice researchers are working with silicon dioxide, which is already a very well understood material, and one with many advantages over its competitors. These include the ability to be manufactured at room temperature, a high on-off ratio, low power consumption, and nine-bit capacity per cell. The recent research has increased silicon dioxide's potential by revealing that porous silicon dioxide requires thirteen times less energy to create pathways in and does not require special edge fabrication methods.

Some predict that RRAM could start coming to market and competing with flash in a few years, thanks to its greater speed and density. Now that it has been shown that a device edge structure is not needed, companies have already started trying to license the technology.

Source: Rice University



Register as a member to subscribe comments.

This news has comment postings disabled because it is now archived.

© 2001-2014 Overclockers Club ® Privacy Policy

Also part of our network: TalkAndroid, Android Forum, iPhone Informer, Neoseeker, and Used Audio Classifieds

Elapsed: 0.0284390450